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Reversal Dynamics of Interacting Circular
Nanomagnets

Dieter Suess, Thomas Schrefl, Josef Fidler, and Vasillios Tsiantos

Abstract—The Gilbert equation of motion is solved to investigate
the reversal dynamics of interacting circular NiFe nanoelements.
During magnetization reversal of isolated circular nanomagnets
inhomogeneous transient states are formed. The exchange energy
of the intermediates states, which is a measure for the uniformity
of the magnetization, increases with decreasing Gilbert damping
constant or increasing applied field. The magnetostatic interac-
tions lead to a further enhancement of the nonuniformity during
reversal of interacting nanomagnets.

Index Terms—Magnetization reversal, magnets, micromag-
netics, nanostructured.

I. INTRODUCTION

NANOSTRUCTURED magnetic elements may be used
as storage elements [1], field sensors [2], or logic gates

[3]. The functional behavior of these devices depends on
the domain configuration and the reversal mechanism of the
nanomagnets. Recently, the domain structure and the switching
processes of circular nanomagnets were investigated using
magnetic imaging and numerical micromagnetics. Cowburn
and co-workers [4] measured the hysteresis loop of thin circular
platlets. They reported a decrease of the coercive field with
decreasing diameter of the nanomagnet. The influence of
magnetostatic interactions on the hysteresis of an array of
circular nanomagnets was demonstrated in [1]. A reduction
of the lattice spacing gives rise to shape anisotropy which
increases the coercivity measured parallel to the long axis
of the chain. Our work applies numerical micromagnetic
modeling to investigate the switching process of isolated and
interacting circular nanomagnets. The results provide details
of the magnetization distribution during irreversible switching.
In addition, the influence of the diameter of the nanomagnet
and the effect of the Gilbert damping constant on the switching
time are investigated.

II. M ETHOD AND MODEL

The theoretical treatment of magnetization dynamics starts
from the Gilbert equation [5],
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Fig. 1. Finite element model of a chain of circular nanodots. The surface mesh
used for the boundary element method is given as a wireframe.

which describes the physical path of the magnetic polarization
toward equilibrium. The effective field is the negative

functional derivative of the total magnetic Gibb’s free energy,
which can be expressed as the sum of the exchange energy,
the magneto-crystalline anisotropy energy, the magnetostatic
energy, and the Zeeman energy. is the gyromagnetic ratio
of the free electron spin. The damping constantconsiders
phenomenologically the relaxation toward equilibrium. All
contributions to , except the demagnetizing field, depend
only locally on the magnetic polarization or its spatial deriva-
tives. To avoid the calculation of the second derivatives which
occurs in the analytical expression of the exchange field, it is
approximated using the a box scheme

for

where is the surrounding volume of the node, such that

and for

The discretization of the LLG equation leads to three ordinary
differential equations for each node for each component. In
the case of a stiff problem it is advisable to use a backward
differentiation formulae (BDF) for time integration, for the non
stiff-case Adams [6] method was found to be appropriate. The
BDF method, which is a implicit time integration scheme, leads
to a system of nonlinear equations at every time step. After
applying the Newton method one obtains a system of linear
equations which is solved using the scaled preconditioned
incomplete generalized minimum residual method (SPIGMR)
[7], [8] based on (GMRES) [9].

Fig. 1 gives the finite element model of an array of interacting
nanodots. The circular nanomagnets with a diameter of 110 nm
are placed on a pitch of 135 nm. The thickness of the magnets
is 10 nm. The circular platelets are divided into tetrahedral fi-
nite elements. The mesh size of 5 nm is equal to the exchange
length of permalloy ( T, J/m). No mesh
is required outside the ferromagnetic elements, since the mag-
netostatic interactions are taken into account with a boundary
element method [10].
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TABLE I
SWITCHING TIMES (ns) FORDIFFERENTPARTICLE SIZES, STRENGTHS OF THE

APPLIED FIELD AND DAMPING CONSTANTS

Fig. 2. Top: Magnetization component parallel to the field direction as a
function of time for different diameters of the nanomagnet. Bottom: Transient
magnetic states forJ =J = +0:6.

III. N UMERICAL RESULTS

A. Single Dot Reversal

The diameter of the dot is varried (55 nm, 110 nm and
220 nm) whereas the thickness remains constant 10 nm. First, a
large field is applied to saturate the particle. After reducing the
field to zero the dot relaxes toward equilibrium. To reduce the
strayfield energy the magnetization tends to be aligned parallel
to the surface. The external switching field is applied instan-
taneously to the saturated state. Table I compares switching
times for different particle diameters, damping constants and
strengths of the external field. The switching time measures the
time from applying the external field until the magnetization
parallel to the external field ( ) becomes smaller than0.9.

For the weaker damped dot ( ) the switching time
increases only about 10% as the particle diameter changes from

Fig. 3. Non-uniformity of the magnetic states during reversal: The plot gives
the exchange energy as a function ofJ =J for different applied fields and
damping constants. The external field is given in units of2K =J .

Fig. 4. Magnetization component parallel to the long axis of the array as a
function of time for three different values of the Gilbert damping constant. The
circles refer to the magnetization patterns of Fig. 5.

55 nm to 220 nm. The particle size has much more influence
on the switching time for . Fig. 2 shows nonequilibrium
states during reversal for different particle diameters. Although
the single domain state has the lowest energy in equilibrium
the particle with nm forms a inhomogeneous-state
during reversal.

The reversal process becomes more inhomogeneous when the
damping constant is decreased or the strength of the external
field is increased. Fig. 3 compares the exchange energy, which
measures the homogeneity of the state, during reversal for dif-
ferent damping constants and field strength for a particle with
a diameter of 110 nm. In the highly damped case ( )
the exchange energy decreases monotonically during reversal.
However in the weakly damped case ( ) the reversal
becomes more inhomogeneous if the external field is increased
from 5.57 kA/m to 7.96 kA/m. The maximum inhomogeneity
occurs shortly before equilibrium is reached .
For a dot with nm the maximum of the exchange energy
occurs shortly after applying the external field .
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Fig. 5. Initial state and transient states during irreversible switching of
the array of circular nanomagnets. The greyscale maps the magnetization
component parallel to the long axis. The simulation time increases from the
top to the bottom.

B. Interacting Circular Nanomagnets

The influence of the Gilbert damping constant on the
switching dynamics of circular nanodots has been investigated.
The system consists of an elongated nanoelement and 4 circular
nanomagnets as shown in Fig. 1. The shape anisotropy of the
array causes the magnetization to be aligned parallel to the long
axis of the chain. First, the magnetization of the input dot was
set antiparallel to the magnetization of the circular elements.
Then the system was relaxed to equilibrium. This equilibrium
state is used as initial state for the simulations of the switching
process. Switching of the nanomagnets requires a field of at
least 5.57 kA/m. Small fields cause a strongly inhomogeneous
magnetic state in the circular nanomagnet placed next to the
already reversed input dot. Fig. 4 compares the time evolution
of the magnetization component parallel to the long axis

obtained for different values of the Gilbert damping constant.
A uniform reversed field of kA/m was applied
instantaneously with an angle of 1 degree with respect to the
long axis of the chain. With decreasing damping constant
the switching time decreases drastically. The slope of the

curve changes considerably as the damping constant is
increased from to . Non-uniform magnetic
states with low magnetostatic energy form in regimes where
the change of with time is small. Fig. 5, which gives the
magnetization patterns for different times during irreversible
switching for , clearly shows the influence of magne-
tostatic interactions on the switching of individual nanodots.
The magnetization of neighboring elements rotates in opposite
directions, forming partial flux closure structures during the
reversal process.

IV. CONCLUSIONS

Circular nanomagnets with a diameter smaller than 220 nm
are single domain in equilibrium. Nevertheless, highly
nonuniform magnetic states form during switching. The
magnetization rotates in plane. Different velocities of the
magnetization in different parts of the circular region cause
transient domain structures which reduce the magnetostatic
energy. A small Gilbert damping constant decreases the reversal
time as compared to the reversal time obtained for .
The numerical results confirm Kickuchi’s [11] prediction that
the minimum reversal time for rotation in magnetic thin films
occurs for .
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