
Wavelet based matrix compression in numerical micromagnetics

T. Schrefl, D. Süss and J. Fidler

Institute of Applied and Technical Physics, Vienna University of Technology, 
Wiedner Hauptstr. 8-10/137, A-1040 Vienna, Austria,  thomas.schrefl@tuwien.ac.at

ABSTRACT

Magnetic sensors and magneto-mechanic devices consist
of spatially distinct ferromagnetic parts. Modeling their
functional behavior requires to take into account the
magnetostatic interactions between the magnetic elements.
A hybrid finite element / boundary element method is
combined with a wavelet matrix compression technique to
simulate magnetization reversal of an array of magnetic
nano-elements. This novel method reduces the storage
requirements and the CPU time while keeping a reasonable
accuracy. The boundary element matrix shows a sparsity of
80% to 90% with a corresponding relative error of the
magnetic properties in the range of 2% to 5%. The
calculated switching field of elongated NiFe nano-elements
depends on magnetic state of neighboring elements. The
spread in the switching field agrees with experimental data
obtained from Lorentz electron microscopy.
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1 INTRODUCTION

The development of advanced magnetic materials such
as magnetic sensors, recording heads, and magneto-
mechanic devices requires a precise understanding of the
magnetic behavior. These applications require a
reproducible magnetic domain structure and a well-defined
switching field of the individual magnetic elements [1]. As
the size of the magnetic components approach the
nanometer regime, detailed predictions of the magnetic
properties becomes possible using micromagnetic
simulations. Micromagnetism is a continuum theory for the
treatment of magnetization processes in ferromagnetic
materials. The micromagnetic equations describe the
relation between the magnetic properties and the
physical/chemical microstructure of the material.
Micromagnetic simulation and magnetic imaging [2] are
complementary tools to investigate domain formation and
magnetization reversal. The comparison of simulations and
experiments can provide useful hints for artificial
structuring of the material, in order to tailor the magnetic
properties according to their specific applications. 

A key part in micromagnetic simulations is the
calculation of the magnetic field which arises from the
interaction of the magnetization with the element geometry.
This so-called demagnetizing field is crucial for the

formation of the magnetic domain structure in large
elements and determines the external field required to
reverse the magnetization of small elements. The
magnetostatic interactions between distinct magnetic
elements become important in magnetic multilayers or
arrays of magnetic dots used for sensor applications, and
magnetic storage [3,4]. 

The direct computation of the demagnetizing field from
magnetic volume and surface charges [5] scales withn² in
storage and computation time, wheren denotes the number
of grid points in a finite different or finite element
discretization of the magnetic device. Fast adaptive
algorithms have been applied in numerical micromagnetics
using FFT or multipole expansion on regular computational
grids [6], in order to speed up the calculations. Finite
element based micromagnetic codes effectively treat the
microstructure of the system, including the shape of the
magnet and the irregular grain structure [8]. The FFT
method cannot be applied on the corresponding unstructured
mesh. Such as in finite element field calculation,
micromagnetic finite element simulations introduce a
magnetic scalar or magnetic vector potential to calculate the
demagnetizing field [8]. Fredkin and Koehler [9] proposed a
hybrid finite element (FE) / boundary element (BE) method
to treat the open boundary problem associated with
calculation of the magnetic scalar potential. This method is
accurate and allows to calculate the magnetostatic
interaction between distinct magnetic elements without any
mesh between the magnetic particles. However, the
conventional boundary element method requires to store a
dense matrix.

This work introduces a novel method for micromagnetic
simulations that combines a hybrid finite element (FE) /
boundary element (BE) method with a wavelet matrix
compression technique. A discrete wavelet transform using
Daubechies wavelets is applied to transform the matrix
obtained from the BE method into a sparse matrix. The
computation of the dense matrix and its transformation has
to be performed only once for a given geometry. The
computational effort for field calculation reduces to a
sparse-matrix vector product (BE part) and the solution of a
sparse system of linear equations (FE part). The method was
tested solving the µMAG standard problem #2 [10] and was
applied to simulate the switching of an array of magnetic
nano-elements. Section 2 of the paper presents the
micromagnetic background. Section 3 describes the
numerical model. Section 4 presents numerical results
obtained for the µMAG standard problem and the
magnetostatic interactions of elongated NiFe elements.



2 MICROMAGNETICS

2.1 Total magnetic Gibb's free energy

Micromagnetism starts from the total magnetic Gibb's
free energy, E, of a ferromagnetic system, which is the sum
of the exchange energy, the magneto-crystalline anisotropy
energy, the magnetostatic energy, and the Zeeman energy
[6]:
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J⋅H dBJ⋅H ext}dV . (1)

Here A denotes the ferromagnetic exchange constant,J
is the magnetic polarizationJ = Js(β1,β2,β3) = µ0M, and M
is the magnetization. Hext and Hd denote the external field
and the demagnetizing field, respectively. fk(J) gives the
magnetocrystalline anisotropy energy.

The subsequent minimization of (1) for different external
fields, subject to the constraint |J| = Js, provides the
hysteresis loop of a magnet [11]. The competitive effects of
the micromagnetic energy contributions upon minimization
determine the equilibrium distribution of the magnetization.
The minimization of the ferromagnetic exchange energy
aligns the magnetic moments parallel to each other, whereas
the minimization of the magnetostatic energy favors the
existence of magnetic domains. The magnetocrystalline
anisotropy energy describes the interaction of the
magnetization with the crystal lattice. Its minimization
orients the magnetization parallel to certain crystallographic
directions. The minimization of the Zeeman energy rotates
the magnetization parallel to the external field.

2.2 Magnetostatic boundary problem

The demagnetizing field Hd follows from a magnetic
scalar potential Hd = B ∇U. The magnetic scalar potential
fulfills the Poisson's equation within the magnetic,Ωm, and
Laplace's equation outside the magnetic particle, Ωe:

∇2 U (r)=∇⋅M (r) for r ∈Ωm , (2)
∇ 2U (r )=0 for r ∈Ωe , (3)

At the surface of the magnet the boundary conditions

U in=U out ,    (∇U inB∇U out)⋅n=M⋅n , (4)

hold, where n denotes the outward pointing normal unit
vector. The magnetic scalar potential is regular at infinity.

3 NUMERICAL MODEL

The finite element method is applied to discretize the
total magnetic Gibb's free energy. M(r) is approximated by
piecewise linear function on a tetrahedral finite element
mesh. Polar coordinatesθi, îi for the magnetization at node

i are introduced to satisfy the constraint |J| = Js at the nodal
points of the finite element mesh. A pre-conditioned, limited
memory quasi-Newton conjugate gradient method [12] is
applied to minimize the energy. Such as any algorithm for
the solution of the micromagnetic problem, the conjugate
gradient method may converge towards a saddle point
[6,13]. To test for stability of a magnetic configuration, a
small random perturbation was added and checked if it
evolved back to its initial state.

Conjugate gradient based minimization techniques
require only the energy and the gradient of the energy to
search the local minima. The gradient of the energy may be
expressed as

∂E
∂θi

=BV i H eff

∂J i

∂θi

,  
∂E
∂îi

=BV i H eff

∂J i

∂îi

, (5)

In (5) the effective field Heff has been introduced. The
effective field at the nodal pointi of the finite element mesh
can be approximated by

H eff ,i=B
δE
δJ i

≈B 1
V i

∂E
∂J i

, (6)

where Vi is the volume of a 'box' surrounding the nodal
point i with

∑
i

V i=∫
Ωm

dV   and   V i∩V j=0  for j≠ j . (7)

Whereas the evaluation of the exchange field and the
anisotropy field follows directly from (1), the calculation of
the demagnetizing field Hd requires to solve the
magnetostatic boundary value problem (2) to (4). 

Following Fredkin and Koehler [10], we split the
magnetic scalar potential intoU = U1 + U2. The potentialU1

accounts for the divergence of magnetization within the
particle and U2 is required to meet the boundary conditions.
The latter also carries the magnetostatic interactions
between distinct magnetic particles. The potentialU1 is the
solution of the Poisson equation

∇2 U 1(r)=∇⋅M (r)    for r ∈Ωm (8)

with the natural boundary condition 

∇U 1⋅n=M⋅n            for r ∈∂Ωm (9)

and U1 = 0 outside the magnetic particle. The potential
U2 satisfies the Laplace equation

∇2 U 1(r)=∇⋅M (r)    for r ∈Ωm∪Ωe (10)

and shows a jump 

U 2
inBU 2

out=U 1            for r ∈∂Ωm (11)



at the boundary ∂Ωm. A standard finite element method
is used to solve (8) and (9). Equations (10) and (11) define a
double layer potential which is created by a dipole sheet at
∂Ωm with magnitude U1. At the surface ∂Ωm the potential U2

is given by the integral

U 2(r)= ∫
∂Ωm

U 1(r´ )∇ ´ ( 1
|rBr´|

) d2 r´

+(
Ω(r )
4π

B1)U 1(r ) .
(12)

The solid angle Ω(r), subtended by ∂Ωm at r, equals 2π
for a smooth surface point r. After discretization of (12)
using a boundary element method, the potentialU2 at the
boundary follows from a matrix vector multiplication

U 2=BU 1 , (13)

where B is a m×m matrix which relates them boundary
nodes to each other. Once U2 at the boundary has been
calculated, the values of U2 within the particles follow from
Laplace's equations with Dirichlet boundary conditions,
which again can be a solved by a standard finite element
technique.

A discrete wavelet transform is applied to transform the
matrix B into a sparse matrix: 

W U 2=W B WT⋅(WT )B1 U 1 , (14)

where W is a matrix formed by Daubechies wavelets
[14]. With the matrix Bw = WBWT in the new wavelet
basis, the matrix vector product can be evaluated as follows

U 1, w=(WT )B1U 1 , (15)
U 2, w=Bw U 1,w , (16)

U 2=WT U 2,w . (17)

The matrix Bw has to be computed only once for a given
geometry. All elements of Bw smaller in magnitude than δ
times the largest element were set to zero. ThusBw becomes
sparse and (14) which significantly reduces the storage
requirements and computation time for the calculation ofU2.
A reasonable accuracy can be obtained with a sparsity

S δ=
mBmδ

m
×100 (16)

in range from 80% to 90%, wheremδ is the total number
of elements after thresholding. The discrete wavelet
transform provided in [14] and a sparse matrix toolkit were
used for the calculations.

4 APPLICATIONS

The new algorithm was tested solving the
micromagnetic standard problem #2 [10]. The

demagnetization curve of a NiFe bar with the extension of
50 nm x 250 nm x 5 nm is calculated under an oblique
applied field. Figure 1 depicts the particle configuration.
The following material parameters where used for the
calculations: zero magnetocrystalline anisotropy, the
magnetic polarization Js = 1 T, and the exchange constant
A = 10B11 J/m.

Figure 1:Geometry of the µMag Standard Problem #2. The
external field is applied parallel to the [111] direction.

The original BE matrix consists of 1.3x106 elements.
Figure 2 shows the sparsity pattern of the transformed
matrix after thresholding using a threshold parameter
δ = 10B3. The transformed matrix contains only 1.1x105

nonzero elements, giving a percent sparsity Sδ = 91.

Figure 2: Sparsity pattern of the BE matrix after wavelet
transformation using a threshold parameter δ = 10B3.

Figure 3 gives the percent sparsity Sδ, and the relative
errors in the remanent magnetization and the switching field
as a function of the threshold parameterδ. The relative error
in the magnetic properties increases from 2% to 12% as the



threshold parameter is increased from 10B4 to 2x10B3. The
corresponding values of the percent sparsity are 75% and
94%, respectively. Figure 4 compares calculated
demagnetization curves for different threshold parameters
with the solution obtained form the conventional FE / BE
algorithm. 

Figure 3: Percent sparsity and relative errors of the
switching field (o) and the remanent magnetization (∆) for

the µMag 2 problem.

Figure 4: Calculated demagnetization curves using
conventional FE/BE method and wavelet matrix

compression.

Finally the method was used to simulate magnetization
reversal in an array of NiFe nanoelements. Figure 5 gives
the finite element model of three interacting nanoelements.
Kirk and co-workers investigated NiFe elements of the very
same aspect ratio and the same center to center spacing
using Lorentz microscopy. The calculated switching field of
an individual element depends on the magnetic state its
neighbors. The magnetostatic interaction field is opposite to
the magnetization. A pair of unswitched neighbors favors
magnetization reversal in the center element, whereas two
switched neighbors stabilize the center element. The

calculated spread in the switching field was found to depend
strongly on the threshold parameterδ. A value of δ < 10B5

was required to reach the interaction field of about 7 kA/m
obtained with the conventional FE/BE method. The
corresponding sparsity is Sδ < 80%. The dependence of the
switching field on the number of switched neighbors is in
qualitative agreement with the experiments.

Figure 5: Finite element mesh of three magnetostatically
interacting magnetic nanoelements.
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